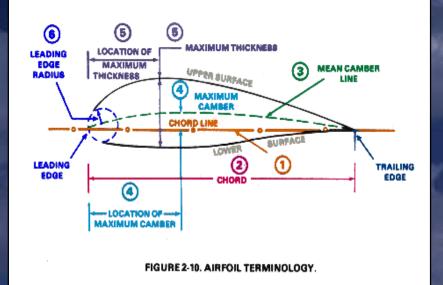


Main Rotor Blade Analysis in Helicopter Accident Investigation by Sam Webb

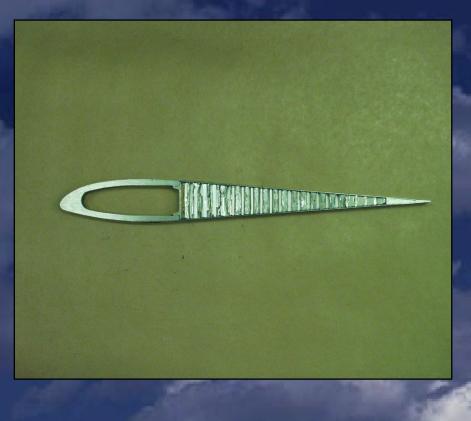


Purposes and Goals

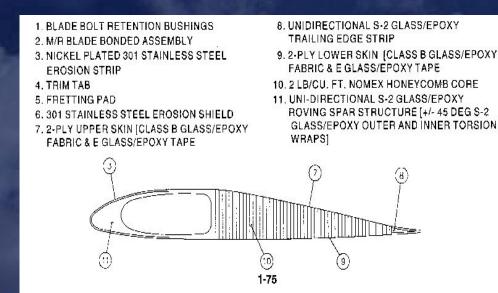
 → Establish the last flight path, heading, and attitude and of the helicopter
→ Establish the RPM of the main rotor and engine power levels
→ Establish drive train continuity
→ Establish sequence of events of the accident



→Investigator must have a limited knowledge of the design of the rotor system and blade



 →Wooden symmetrical airfoil
→Nickel leading edge, wooden filler, steel spar



→Aluminium spar and skin, honeycomb core

→ Composite asymmetrical airfoil → Uni-directional S-2 glass/ epoxy fabric & E glass/ epoxy tape, fibreglass spar → Superior fatigue tolerance, notch and corrosion resistance

Main Rotor Design Differences

 → Normally wider cord / longer length blades
→ Higher main rotor RPM/ higher blade inertia

Two Bladed Systems, (teetering, semi-rigid)

Main Rotor Design Differences

 Blades usually lighter construction, less cord, less length
Main rotor RPM values marginally lower to compensate for cord area differences

Fully articulated, multiblade systems

Main Rotor Design Differences

 → Blades same construction as multibladed system
→ Main rotor RPM values same as multibladed system

> Coaxial- counter rotating, multi-blade systems

 \rightarrow Blade bending, not shattering \rightarrow Blades generally intact →Blade bending inboard and downward → High angle of attack= blade tearing aft of spar

Low Main Rotor RPM

→Blade tip weights intact

Weights

Low Main Rotor RPM

Spar fractures, trailing edge separation
Honeycomb fractured and separated
Damage mainly to outboard sections of blade

Fractured spar

 → Tip weights "ejected"
→ May travels for kilometres from the impact site (farther distances for multibladed systems

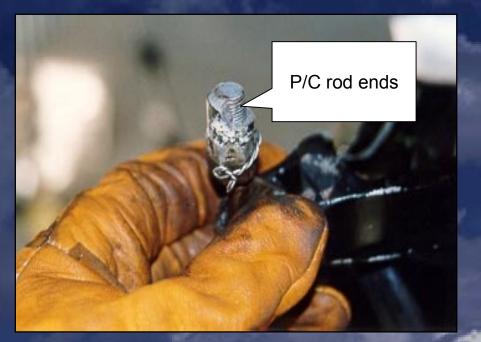
 → First blade to impact surface most damaged
→ Following blades exhibit lesser damage due to main rotor inertia bleed off

→ Damage is in plane

→ Massive blade distortion on multibladed systems →Blades sustain more damage due to lighter construction \rightarrow Articulated systems, dynamic stops fail

 \rightarrow Blade spindling/ distortion → Spar fractures depending on main rotor RPM → Bending of spar depending on angle of attack

Damage From Water Impact



Factors Effecting Main Rotor RPM

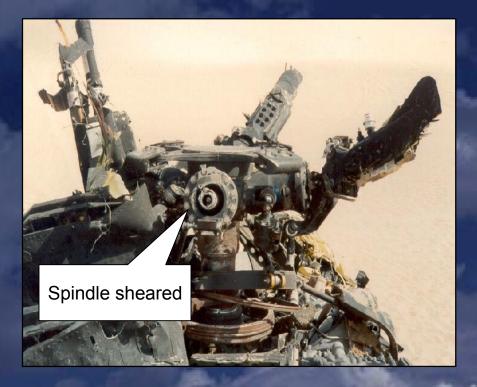
 → Inertia of the blade- with high inertia will lose RPM slowly with increased angles of attack
→ Higher the helicopter gross weight and/or density altitude= more the blade wants to overspeed
→ Manoeuvring- tends to increase RPM due to energy enhancement of the rotor system

 → Will collaborate other evidence
→ Distorted or broken
→ Direction of force will collaborate power on or off and autorotation

Main Rotor Controls

→ Damage to pitch horn, blade grip, mast assembly on semirigid and rigid systems= indication of high RPM

Main Rotor System


→Torque-tension strap damage

Main Rotor System

→MR Spindle shear damage

Main Rotor System

→Swashplate duplex bearing damage= indication of high RPM

Main Rotor Swashplate

 → Pitch change rod end attachment damage
→ Static overload indications= high RPM
→ "Necking" indications= low RPM

Main Rotor Controls

Summary

Sometimes you just have a bad day!

Summary

Sometimes you never understand!?!?!?!

Thank you for your attention!