

Australian Government

Australian Transport Safety Bureau

Australian Government

Australian Transport Safety Bureau

Background

- Analysis has been a neglected area in terms of training, guidance, standards
- ATSB wanted to:
 - improve rigour and consistency of analysis
 - improve ability to detect safety issues in system
 - incorporate new process in Safety Investigation Information Management System (SIIMS)
- Borrowed ideas from available material, developed new material

Australian Transport Safety Bureau

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Transport Safety Bureau

Old world - OASIS

🛍 Occurrence Analysis Safety Information System

Australian Government

Australian Transport Safety Bureau

Mike Walker, ASASI 2006

New world - SIIMS

- Safety Investigation Information Management System
- Drivers for change:
 - Simplify occurrence data model
 - Manage investigations as formal projects
 - Move from paper to electronic documents
 - Improve information flow with internal and external partners
 - Improve analysis of evidence

Australian Transport Safety Bureau

SIIMS investigation workspace

- Investigation log (activities, issues, decisions)
- Document management system
- Evidence management / tracking
- Project management
 - TASKey, risk management
- Analysis tools (including safety action)
- Report workflow
- Contacts
- Access to occurrence database

Australian Government

Australian Transport Safety Bureau

Safety investigation process

Australian Government Australian Transport Safety Bureau

Investigation analysis (1)

- Process of converting data to findings
- Heart of safety investigation
- Iterative process
- Occurs throughout the investigation
- Involves asking questions (more than just asking 'why')

Investigation analysis (2)

- Relies on judgement
- Can develop useful, realistic and widely accepted findings by using:
 - well-defined concepts
 - structured set of steps
 - team-based approach
 - domain knowledge
- Analysis needs time

Investigation analysis needs

- Standardise terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Government

Australian Transport Safety Bureau

Some key terms

- Risk, hazard, safety
- Accident, incident, occurrence
- Event, condition
- Safety factor
- Contributing safety factor
- Safety issue

Safety factor

- Event or condition that increases risk
- Something that increases the likelihood of an occurrence, and/or severity of the adverse consequences associated with an occurrence
- Not just contributing factors
- Need to be pragmatic

Contributing safety factor

- Safety factor that, if it had not occurred or existed at the relevant time, then:
 - the occurrence would probably not have occurred
 - adverse consequences associated with the occurrence would probably not have occurred or have been as serious
 - another contributing safety factor would probably not have occurred or existed

Australian Transport Safety Bureau

Safety issue

- Safety factor that:
 - can reasonably be regarded as having the potential to adversely affect the safety of future operations; and
 - is a characteristic of an organisation or a system (rather than a characteristic of a specific individual, or characteristic of an operational environment at a specific point in time)

Australian Transport Safety Bureau

Risk acceptability

Types of safety factors

Australian Government Australian Transport Safety Bureau

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Government

Australian Transport Safety Bureau

ATSB investigation analysis model

Organisational Influences

(What could have been in place to prevent problems with the risk controls?)

Risk Controls

(What could have been in place at the operational level to reduce the likelihood or severity of problems?)

Local Conditions

(What aspects of the local environment may have influenced the individual actions / technical problems?)

Individual Actions

(What individual actions increased safety risk?)

Occurrence Events

(including technical problems)

(What events best describe the occurrence?)

Australian Government Australian Transport Safety Bureau

Production path

Mike Walker, ASASI 2006

Safety

issues

Safety indicators

Investigation path

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Government

Australian Transport Safety Bureau

Principles of critical reasoning

- Arguments, premises, findings
- Deductive versus inductive reasoning
- Terms to describe likelihood
- Fallacies and biases during reasoning
- General reasoning principles
- Evidence tables

Evidence table

- Structured means of providing supporting argument for proposed finding
- Basic evidence table
 - Intermediate findings
 - Key findings in report (not safety factors)
- Safety factor evidence table
 - Contributing safety factor findings
 - Other safety factor findings

Australian Transport Safety Bureau

Intermediate findings: Examples

- What was aircraft configuration at impact?
- Who was the handling pilot?
- Was the driver appropriately licensed?
- When was the last maintenance performed?
- What was the wind speed at the time?
- Did the witness actually see the impact?
- How accurate is the radar data?

Investigation report findings

- Contributing safety factors
- Other safety factors
 - Other safety factors identified during investigation which are considered important
- Other key findings
 - Resolve significant ambiguity or controversy
 - Discuss potential scenarios
 - Positive factors which 'saved the day'

SIIMS: Basic Evidence Table

Title

Flight crew qualifications / fitness

Description

There were no indications of any medical or physiological conditions that were likely to have impaired the crew's performance.

Item	Comments	Supports?
CASA medical records indicated no ongoing or potential medical fitness concerns.	Such records are not always reliable indicators of existing problems	supports
Interviews with pilots revealed no indications of ongoing or recent medical problems likely to influence performance.	Crews typically unlikely to volunteer such information. However interviews specifically addressed medical issues, and no indications of behaviour suggesting medical problem during interviews.	supports
Operator arranged for crew to undertake eyesight tests – no problems identified.		supports

Summary

Sufficient evidence to support conclusion / no conflicting information

Supported?

Add to key findings?

No

Completing an evidence table

- Develop the proposed finding
- Identify relevant items of information
 - support the finding
 - are contrary to the finding
 - no direct bearing this time but usually relevant
- Evaluate strength of each item
 - consider reliability, precision, relevance
 - add comments and qualifiers where appropriate
- Evaluate overall merits of proposed finding

Australian Government

Australian Transport Safety Bureau

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Government

Australian Transport Safety Bureau

Australian Government

Australian Transport Safety Bureau

Investigation analysis process

Safety factors analysis

Safety factor identification

- Starts soon after investigation starts, conducted at regular intervals
- Focuses on identifying potential factors
- Aims to:
 - identify potential critical safety issues early
 - guide data collection needs

SIIMS Safety factors list

Title	Factor Type	Further Analysis	Existence	Finding Type	Safety Risk Level	Analysis Complete
Long landing	Occurrence event	yes	yes	Contributing factor		Yes
Runway overrun	Occurrence event	yes	yes	Contributing factor		Yes
Flight crew risk management of weather	Individual action	yes	yes	Contributing factor		Yes
Go around too late	Individual action	yes	no	None		Yes
PIC cancelling go-around	Individual action	yes	yes	Contributing factor		Yes
Not using TOGA	Individual action	yes	yes	Other safety factor		Yes
Crew not selected full reverse thrust	Individual action	yes	yes	Contributing factor		Yes
Crew knowledge of contaminated runway operations	Local condition	yes	yes	Contributing factor		Yes
Visibility due rain	Local condition	yes	yes	Contributing factor		Yes
Non-standard glideslope (3.15 degrees)	Local condition	yes	yes	None		Yes
Runway not grooved	Risk control	yes	yes	Other safety factor	Significant	Yes
Contaminated runway procedures and training	Risk control	yes	yes	Contributing factor	Critical	Yes
Training in approach configurations	Risk control	yes	yes	Contributing factor	Significant	Yes
Hazard identification processes	Org influence	yes	yes	Contributing factor	Significant	Yes
Risk assessment processes	Org influence	yes	yes	Contributing factor	Significant	Yes

Safety factor processing

- Starts when most of the data has been collected
- For each potential safety factor:
 - Define
 - Test
 - Classify
 - Explain
- Aims to provide list of established safety factor findings

Australian Transport Safety Bureau

Australian Government Australian Transport Safety Bureau

Safety factor processing

Mike Walker, ASASI 2006

Australian Government

Australian Transport Safety Bureau

SIIMS: Safety Factor Evidence Table

Title		Safety factor type	Safety issue
Description			
EXISTENCE			
	ltem	Comments	Supports?
Existence?			
Summary			
INFLUENCE	Factor(s)	(title)	
	ltem	Comments	Supports?
Influence?			
Summary			
IMPORTANCE Importance?			
JUSTIFICATION			

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Government

Australian Transport Safety Bureau

SIIMS analysis tools

Australian Government Australian Transport Safety Bureau

AO-2005-007. Runway overrun – Darwin – 23 January 2005

Basic evidence	tables Sequence o	of events Safety fa	ctors Risk analys	ses Summary	of findings Safe	ty actions	
Overview	Overview						
Define	Title:	Contaminated runway proced	ures / training				
Test	Description:	Company-published information, procedures and flight crew training provided incomplete guidance foir landing on water-affected runways.					
Classify	Safety factor type:	Risk control		Safety issue:	Yes		
Explain							
Risk analysis	Test			Finding to conf		Courselate (
Safety action	Classify	Influence: Yes	Importance:	Finding type: C	ontributing safety factor	Complete: 🗸	
	Safety factor type		Functional area	Position/role	Error type		
	Risk control - Procedu	res	Flight operations	N/A	N/A		
	Risk control - Training		Flight operations	N/A	N/A		
	Explain						
	Title		Safety factor type	Further analysis	Existence	Finding type	
	Hazard identification p	processes	Organisational influence	Yes	Yes	Contributing safety factor	
	Training design proces	<u>S</u>	Organisational influence	Yes	Yes	Contributing safety factor	
	Risk analysis						
	Consequence: Major	Likelihood: Rare	Safety risk	level: Significant	Complete: 🗸		
	Safety action						
	Organisation	ATSB/Non-ATSB	Action type	Date			
	Superoo airlines	ATSB	Recommendation	21 Oct 05			
	Complete						
	Safety factor processi	ng complete					
	Print summary	Print details		Next >	> Mike Wal	ker, ASASI 2006	

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Australian Government

Australian Transport Safety Bureau

ATSB analysis policies

- Every occurrence investigation requires sequence of events analysis
- All findings supported by an evidence table
- All safety issues to be subject to risk analysis
- ATSB encourages safety action before issuing recommendations
- ATSB recommendations to be based on safety issue description

Australian Transport Safety Bureau

ATSB analysis guidelines, training

- Comprehensive guidelines on:
 - Basic concepts (key terms, analysis model, critical reasoning)
 - Analysis process (with examples)
- Investigation analysis course
 - 4 days, practical exercises
 - May open to external parties soon
- Materials provide platform for organisational learning

Australian Transport Safety Bureau

Investigation analysis needs

- Standard terminology
- Standard accident development model
- Principles of critical reasoning
- Defined process / workflow
- Supporting tools in SIIMS
- Policies, guidelines and training
- Clear links between evidence, findings, recommendations, database

Classifying safety factors

- Enables trend analysis, research
- Safety factor types plus other variables
- Safety factor types based on investigation analysis model, review of past data, review of other databases
- Classifications aided by factor descriptions

ATSB occurrence database

- Needed simpler data model to help standardise collection and coding of data
- Reviewed ICAO ADREP 2000 and many other databases
- Guiding principles: frequency, importance
- Sending out detailed specifications to organisations interested in electronic notifications to ATSB
- Will eventually be (limited) public access

Australian Transport Safety Bureau