RAPID DECOMPRESSION AND HYPOXIA IN AIRCRAFT ACCIDENT AND INCIDENT INVESTIGATION

TRANSPORT ACCIDENT INVESTIGATION COMMISSION

Robin Griffiths, Senior Lecturer in Aviation Medicine and TAIC Consultant Adviser

Dr David Powell

Chief Medical Officer Air New Zealand and Visiting Lecturer University of Otago Medical School

Presentation

- Epidemiology (RG)
- Characteristics (RG)
- Hazards (RG)
- Analysis and reconstruction (RG)
- Airline perspectives (DP)
- Oxygen/pressurisation equipment (DP)
- Issues (DP and RG)

Epidemiology

- Data limitations
- High profile accidents
- Incidents
- Extreme RDs
- ASRS data (courtesy Mitch Garber, Medical Adviser NTSB)

Recent Incidents of Note

- Local
 - Metroliner
 - Convair
 - Hornet
- Alaska Air
- Payne Stewart

Flight Level (ASRS)

•40K+ 4%

•30K+ 69%

20K+ 23%

•10K+ 4%

Maximum Cabin Alt.

• 20K+ 6%

•14K+ 44%

•10K+ 42%

•N/S 8%

DECOMPRESSION RATE

•Rapid 30%

Moderate 30%

•Slow 21%

•Insidious 9%

CAUSE

• Controller 329	%
------------------	---

Structural21%

Pressurisation source 29%

Operator5%

• N/S 13%

Practical Problems

- Mask/headset donning & retention
- Communications
- Sick/invalid Pax
- Horn and wind noise
- ATC and/or not declaring emergency
- Smoke/heat from Oxygen Candles
- Control of A/C and/or CA
- Emergency procedures

Physical Hazards

- Noise
- Extraction
- Distraction
- Debris
- Cooling & misting

Physiological Hazards

- Hypoxia
- Gas Expansion
- Hypothermia
- Decompression Illness
- Human performance

RD Effects Determined by:

- Vc
 Cabin Volume
- A Cross sectional area of defect
- P Cabin pressure altitude
- B Flight pressure altitude

Effects

Vc

Rate

A

Rate

• P-B

Severity

• P/B

Rate

• B

Physiological effects

Analysis

RD Time = 0.22Vc x sq rt (P-B/B) OR, $RD Time = tc \times P_1$ Time Constant tc = V/AcPressure factor P_1 = Haber Clamann formula

Pressure Dependent Factor P1

•
$$P/B = 1$$

$$\bullet$$
 P/B = 5

•
$$P/B = 10$$

•
$$P/B = 15$$

$$\bullet P/B = 20$$

$$\bullet$$
 P/B = 25

$$P_1 = 0$$

$$P_1 = 2.9$$

$$P_1 = 4.1$$

$$P_1 = 4.8$$

$$P_1 = 5.3$$

$$P_1 = 5.7$$

Any Questions?

